2020 IEEE International Conference on Smart Computing (SMARTCOMP)

Federation of Smart City Services via APIs

Pierfrancesco Bellini
DISIT Lab
University of Florence
Florence, Italy
pierfrancesco.bellini@unifi.it

Davide Nesi
DISIT Lab
University of Florence
Florence, Italy
davide.nesi@unifi.it

Abstract— In the context of Smart City, it is quite frequent
the usage of Smart City API for providing services at web and
mobile applications. Most of the solutions using Smart City APIs
are focused on a single city. This means that passing from one
city/area to another, the users must change application. This
happens for the lack of interoperability among Smart City APIs
and/or services. In this paper, the problem of federation of
smart city services is addressed by proposing a solution for
federating smart city APIs. To this end, a formal model has been
proposed to federate API services, with efficiency, security,
scalability, and capacity of managing overlapped areas of
competence, distributed searches, etc.. These features are
typically not all satisfied by classic GIS solutions which federate
the services at level of databases. The solution has been
developed in the context of Snap4City European platform
enhancing former Km4City API of Sii-Mobility national project
with Snap4City (https://www.snap4city.org).

Keywords—knowledge base, smart city API, smart city
services, federation of smart cities

L. INTRODUCTION

In the context of Smart Cities, not all cities/areas are
becoming smart in the same manner [1]. In most cases, the
cities are focused to a set of smart services, for example: smart
parking, smart education, smart gov, smart lighting, etc.,
according to their needs and strategies. In most cases, vertical
applications have been implemented for years as separate
pillars, and only recently there is push on integrating data
and/or services to exploit higher level machine leaning
business intelligence tools and control room dashboards [2].
For Smart City applications, it is quite frequent the usage of
Smart City API to provide services and data via web and
mobile applications. Examples of Smart City APIs are:
Km4City API [3], E015 [4], or [S]. Others possible clients
could be control room Dashboards used by city operators, City
Major and city Councilman [2]. Most of the solutions (web or
mobile) using the Smart City API are focussed on a single city.
This means that, passing from one city/area to another, the
users have to change mobile application to get the same
service. This happens for the lack of interoperability among
Smart City API, SCAPI. They are not standardized, see the
review of Smart City API on [6]. An alternative solution is
offered by global services (such as Google) which sadly not
covers local services using private data of the city. A large part
of the services proposed via Smart City API are geolocalized
and provide different results according to the user’s ID
assigned profile: organization, role level, past activity,
preferences, etc. The User ID implies the management of
Personal Data, and thus the GDPR has to be applied [7]. In the
context of GIS (Geographic Information Systems) data
exchange the federation of services is largely diffused [8].
Most of the GIS solution for federation are based on federating
datastores. The classic GIS interoperability is limited to 1:1
exchange of geographical data for example exploiting
protocols as WFS (Web Feature Service), WMS (Web Map
Service), for the exchange of Maps and geoelements such as
paths, points of interest, road elements, road graphs, etc. GIS

Mirco Soderi
DISIT Lab
University of Florence
Florence, Italy
mirco.soderi@unifi.it

Paolo Nesi
DISIT Lab
University of Florence
Florence, Italy
paolo.nesi@unifi.it

protocols, according to their definition, they are typically
unsuitable as API for providing data related to smart services,
such as smart parking, subscription on alerts on environmental
conditions, etc., as needed for smart city applications. Most of
vertical Smart City API based solutions are typically focussed
on a limited range of data by using SQL databases which in
turn can provide support for geolocated information and may
be federated at level of the database. In alternative, noSQL
storages can be designed to support the smart city services as
well, also supporting geolocated information. Among the
noSQL storage solutions, the most suitable to manage
geolocated information together with city entities
relationships are those based on RDF model (Resource
Description Framework) [9]. RDF stores can be federated at
level of semantic model. On the other hand, federated RDF
storages are far to be a good support for federated smart city
services [10], since the concepts of federation has to be at
service level, for example, for routing by taking into account
different geographical areas addressed by different RDF
stores.

In this paper, a solution for federating Smart City API on
geographic area is presented. The study has been motivated by
scaling Km4City Smart City API from single cities to regions
and from regions to a number of European Areas in the context
of Snap4City PCP for Helsinki, and Antwerp [7]. The solution
proposed aimed to solve the requirements that presently
cannot be solved by traditional GIS solutions. The solution
proposed does not need to: (i) create a strong cohesion among
the different services and thus does not leave at the single city
the decision to join the federation or not and neither to the
single client Mobile application, (ii) connect GIS services via
WFS/WMS services, (iii) migrate data among services. For
the design, implementation and validation of the solution we
have used and enhanced the former Km4City API and
ontology [6], which has been implemented as the so called
ServiceMap. For this reason, the federation of Smart City API
has been provided in the so-called SuperServiceMap. The
validation has been performed by considering 4 large areas
and smart city services in place covering: Tuscany region of
3.5 inhabitant in the center of Italy, north of Italy and Sardegna
island, Antwerp and north of Belgium, and Helsinki and south
of Finland.

The paper is organized as follows. In section II, the
requirements identified for federating Smart City API are
presented. Section III presents the general architecture and
solution for federating large smart city services, which may
cover single cities, as well as regions. In Section IV, a formal
operational model and semantic for the federation of smart
city API and services are presented. Section V describes the
main families of the Advanced Smart City API which can be
exploited in the federated network. Section VI provides the
evidence of how the identified requirements identified in
Section II have been satisfied. Validation and performance
have been reported in Section VII. Conclusions are drawn in
Section VIIL

978-1-7281-6997-2/20/$31.00 ©2020 IEEE
DOI 10.1109/SMARTCOMP50058.2020.00077

356

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:26:07 UTC from IEEE Xplore. Restrictions apply.

II. REQUIREMENTS AND ANALYSIS

A distributed Smart City API, SCAPI, based solution for
a set of cities, let say a federated network of Smart City APIs
(called in the following federated SCAPI) should satisfy the
following requirements. The federated SCAPI network
connects a set of SCAPI services (called Nodes) which are
independently offered and maintained by single cities/areas.
They provide their own data and services. It should not be
confused with the federation/collection of APIs in a common
basket to expose them uniformly in terms of definitions but
managed by offered by different organizations providing this
service to a single city/area mainly as in E015 [4]. A more
general view is that of ALMANAC [13], [11], which can be
regarded as EO15 with a limited scope in terms of services,
among different cities. Thus, according to our definition the
federated SCAPI network of nodes should:

1) guaranteed that nodes do not need to permanently
share data as in P2P solutions or as in federated
databases. This requirement must be satisfied to assure
that the data are located only in the nodes authorized to
manage them;

support distributed search on the federated SCAPI

network;

support nodes of any size in terms of number and volume

of data sets providing services of the nodes. In addition,

the geospatial size and shape of each node may be: (i) not
regular (nor a circle but a shape), and multiple connected

(so called multi-polygon), (ii) partially overlapped with

other nodes, (iii) totally included into those of other

nodes, (iv) disjoined and even far each other (this means
that the union of all the areas can be disjoined with respect
to the global map of the earth);

Support nodes with a different number of services

available. This implies that not all kinds of services and

data may be necessarily available in all nodes;

Support nodes with georeferenced services or not. This

means that are general for the area addressed and not

specifically related to the GPS position;

respond to API calls in terms of services in transparent

manner passing from one node to another or when the

service needs to provide results coming from more nodes;
support access control to prevent access to data and

services by not authorised users. Since the passage of a

user from one SCAPI node to another of the federated

SCAPI network may imply the sending of requests which

may try to access at private data/services;

support the addition/removal of nodes in the network

without the need of fully restructuring of the network and

modifications have an immediate effect without any
service reloading or disruption;

provide results in real time also when a large number

of nodes/areas are involved. The implementation should

also provide support for creating redundant solutions with
high resilience;

10) provide the response in the coherent format with the
expected response of the single services. Thus, the results
of the federation may need to be merged to produce the
response in any format: JSON, XML or HTML.

2)

3)

4

5)

6)

7)

8)

9)

1.

In order to satisfy the requirements, the architecture
reported in Fig. 1 has been realized. It includes a Master of

GENERAL ARCHITECTURE

357

the federated SCAPI network implemented as Smart City
Servers with SCAPI (in Snap4City they are the ServiceMap
tools [12]). In order to avoid having a single point of failure,
the Master can be replicated into each node and the list of
Super services on top of ServiceMap SCAPI can be put
accessible in one or more web servers for update. Each
ServiceMap has a representation of the multi-polygon
addressed by the nodes (with their data/services) and thus of
their partitioning over the nodes of the federated SCAPI
network. In more details, each node/SCAPI may register in the
Master and Super network the descriptor of the multi-polygon
area of your competence. This approach permits at the Supers
to redirect the queries to the nodes that could provide the
service and data. Thus the Supers do not need to hold the data
of the nodes and perform the distribution of queries only to the
involved nodes, to finally collect the results and performs data
fusion. The Supers as well as the ServiceMaps may also
implement some query caching solution as all the other
SCAPI.

The most relevant aspects of the procedure are mainly
related to the: (i) identification of nodes to be involved
according to the requests received with a complexity that may
depend on the size of the node descriptors (number of
polygons); (ii) distribution of query in each Super with a
complexity O(1), the execution time would be top to the
slowest node, exploiting multithreading approach; (iii)
collection of results and their fusion to avoid duplicates and
compounding the results, with a complexity depending on the
size S of the elements O(S). The main complexity is typically
due to point (iii). When the nodes are created to split the
complexity of computing services and thus to improve the
performance: the workload on nodes has to be balanced.
Moreover, in certain cases of (i), it is not possible to identify
a priori one and only one node to be queried for a specific
data/service, and may imply that in some cases all nodes are

queried.
- s - __':1.___ . =
E | e |
[#n Ay Y v-‘;:n:|-\ - ; —
| drga L 3 [Lt il d i Wy
N ¥ i
/ T .. W -
i St s g = -
{ hiren 7 l;-lru-'lfﬂr T ety (o | — L
| i e | ™]
' — /
1 A AL .. "N iy | AN :__' —
"-,-’I o "‘———l_"_'"'*”"'] Sy, [-iE e

Fig. 1 — General Architecture of Super ServiceMap and Federated SCAPI
network

IV. SUPERSERVICEMAP OPERATIONAL SEMANTIC

In this section, the ServiceMap model is presented and it
is shown how different models are combined to create a
SuperServiceMap exploiting former SCAPI based on
KmA4City plus some extension. In the context of the
SuperServiceMap solution, a ServiceMap is defined by the
following tuple:

ServiceMap = (E,G,A,D,loc, gs,ss, inf,path)
Where:

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:26:07 UTC from IEEE Xplore. Restrictions apply.

E is the set of city/IOT entities managed by the
ServiceMap. The city entities can be POI, services,
IOT devices, road segments, etc.;

G c W =[-180,180] x [—90,90] is a subset of the
WGS84 geographic coordinates representing the
geographic area covered by the ServiceMap;

A is the n-dim space that models the arguments that
can be provided for a search request;

D is the m-dim space that models the data associated
with an entity (e.g., name, address, category);

loc: E — (G)1 is a function mapping for each entity
a geographic point or area in G;

gs:p(W) x A — p(E) is a function that models
geographic search that given a subset of W and some
other arguments in A returns a subset of entities E that
belong to the geographic area so that VX c W A e €
gs(X,a) = loc(e) N X # @;

ss: A - g(E) is a function modelling searches that do
not involve geographic info, so that given the search
parameters returns a subset of the entities satisfying the
search;

inf:E — D is a function which returns the list of
details of a city entity;

path:G X G X A - Seq(E) is a function that given
two geographic points and other parameters returns a
sequence of entities in E representing the “best”
path/route (modal or multimodal, with different travel
means).

This model allows to have entities with no geographic position
i.e., loc(e) = @, in this case the gs function will never return
these entities while they can be retrieved using the ss
function. An important property of function gs is that if X N
G =0, gs(X,a) = @ that can be read: searching outside the
geographic coverage area of a ServiceMap will not give
results.

Given a set of ServiceMaps {SM;,SM, ...SMy} we can
build the SuperServiceMap to manage all entities in
ServiceMap; = (E;, G;, A, D, loc;, sg;, ss;, inf;) defining:

E= UIiv=1 E;
G= U?’=1 G;

o
o
e loc = U, log

gs(X,a) = UL, gs;(X, a)
ss(a) = U, ss;(a)

inf = UX, inf;

path = U, path;

The sets 4 of possible arguments and D of possible details
are not tied to any particular ServiceMap. No coherence
problems arise if the set of city entities of different
ServiceMaps are disjoined (Vi # jE; N E; = @). While, if
some common city entities exists -- i.c., Je € E; Ae € Ej it
has to hold: loc;(e) = loc;(e) and inf;(e) = inf;(e) .

! 9(X) is the powerset of X, set of all possible subsets of X

358

Moreover, it should be noted that function path of
SuperServiceMap, defined as the union of path; functions
over the different G;, does not associate a value when applied
to two points belonging to disjoint G sets. The error
management allows to split the problems in distinct routing
queries at the corresponding ServiceMap services.

V. ADVANCED SMART CITY API, ASCAPI

This section is devoted to the description of the Advanced
SCAPI, ASCAPIL. The full list and semantic of input
arguments for API (space 4) can be retrieved from the online
documentation of the ASCAPIs on
https://www.km4city.org/swagger/external/index.html. They
have been strongly extended with respect to the former
Km4City Smart City API of [Nesi etal., 2016]. The extensions
have been designed and performed to extend the number of
data types, domains and city entities addressed, and to allow
the federation of SCAPI based knowledge bases.

The Service discovery and information family of APIs
allow to perform a search for services (i) around a given
position, (ii) near to a given service, (iii) within the boundaries
of a bounding box, (iv) within the boundaries of a given
geographic area (which can be defined as a WKT shape), (v)
within the boundaries of a given municipality, (vi) through
one of the above filtered on the basis of a full-text to be
searched. The same API allows to retrieve full details about a
given service of interest, identified through its URI (services
are stored as resources in semantic knowledge bases,
ServiceMaps -- also said the triplestores -- each identified
through a URI, that also is a URL, in a Linked Data). This is
modelled with the inf function that is used to retrieve
information about an entity. If it is not possible to recognize
from the URI the ServiceMap that is managing the referred
entity the only choice is asking to all ServiceMaps and caching
the (service, ServiceMap id) pair for future requests. This is
performed in the middle layer as described in the following.

The Event Search family of APIs allows to retrieve events
in the region (past, current and future). The geographical
region of interest is specified by the user through the selection
input parameter.

The Address and geometry search by GPS family of APIs
allows to retrieve a full address (municipality, road name, and
civic number) that corresponds to the nearest to a given
position, also possibly including public transport lines or other
points of interest that locate nearby the selected position,
possibly furtherly filtered through a full-text search.

The Search paths in a geographic area family of APIs
allows to retrieve paths of the public transports that locate
nearby a geographical position or within the boundaries of a
geographical area. In this case, search for all the bus-stops in
the area supplied and returns all the bus lines that pass from
those stops. The key input argument for the identification of
the POI is the selection, modelled as gs function. The Shortest
Route/Path Finder API allows users to get the best route from
a given starting point to a destination through a modal or
multimodal routing. In this case, it is identified the
ServiceMap managing them (via cache or via request) and if
exists a ServiceMap that match for both the source and
destination it is queried otherwise an error is returned. The
management of the error allows to split the problems in
distinct routing queries at the corresponding ServiceMap

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:26:07 UTC from IEEE Xplore. Restrictions apply.

services.

VI

In this section, the details about the SuperServiceMap is
implemented according to the general architecture described
in Section IIl. The ServiceMap exposing SCAPI are
implemented in Java and RDF triple stores. The SCAPI
provides results to the SuperServiceMap or directly to the
clients by using JSON. Each ServiceMap may have or not its
own SuperServiceMap interface and in that case may be
connected to all the other ServiceMap as depicted in Fig. 1.
The SuperServiceMap implements ASCAPI and the logic
reported in Section IV, it: (i) identifies and query the
ServiceMaps on the basis of the received requested and their
georeferences, (ii) submits the queries to one or more
ServiceMaps and get the results, (iii) combines the results and
provides them to clients. Thus, when multiple ServiceMaps
are queried, the request is delivered in parallel to all of them
by the SuperServiceMap. Then the responses are collected and
merged, duplicates are stripped out, resources are sorted with
the same criterion that the ServiceMaps use, and the final
response is provided back to the end user.

THE SUPERSERVICEMAP MAIN PROCESSING ASPECTS

A. Selection of ServiceMaps to be queried and exceptions

The selection of the ServiceMap(s) to be queried is
generally based on the geographic areas involved in the
request. Thus, only the ServiceMap addressing/intersecting
that area are queried. The pair (service URI, Service Map) is
then cached to reduce the number of requests from one service
to another. In the case of multiple ServiceMaps insisting on
the same area. In order to maximize performance, or making
an a priori balance on services, it has to be possible to define
a priority among the different ServiceMaps on the basis of the
query or on services. This mechanism is practically used to
satisfy Reqs.5. The passage from one SuperServiceMap to
another can be also very easy since the Mobile Application
can have a direct link with the SuperServiceMap and area for
which has been natively developed. While discovering that all
the results are referring to another are may decide to continue
to ask at its API end point of reference or to pass at the other
one.

B. Merging ServiceMap results of any Format

ServiceMap ASCAPI (as smart city API) may be invoked
to request results in JSON or HTML [Nesi et al., 2016].
Results in JSON can be easily merged, while results in HTML
may include interaction plus relative URLSs to JavaScript, style
sheets, images, and other can be found. This approach is very
suitable for mobile client which need to immediately provide
the results without reformatting. Thus, for HTML, the
SuperServiceMap needs to combine multiple results coming
from different ServiceMaps which provide different base
URLs. Thus, the HTML results received from the
ServiceMaps are parsed, relative URLs are identified, and are
replaced with full URLs.

The above subsections have discussed the solution to
satisfy some of the above-mentioned requirements. Req.1 is
satisfied by the solution since the different ServiceMap/
SuperServiceMap servers do not copy the data of the other
services in local but only know the presence of the other
services and have their high-level descriptor in terms of area
of competence. Reqs. 2, 3, 4, 8 and 9 are satisfied and
performance are shown in Section VII. Req.7 is satisfied
according to security aspects addressed at level of single
ASCAPI as described in [Badii et al,, 2020]. Req.10 is

359

described in Section VIL.B. Regs. 5 and 6 are discussed in
Section VI.A.

VIL

The solution has been validated, and we have also studied
the performance in 4 different real operative conditions. To
test the efficiency and effectiveness of the proposed approach,
the following conditions have been set up: (i) three areas of
interest with their ServiceMap have been taken: (1) Tuscany
Region (about 519 Million of triples), (2) City of Antwerp and
City of Helsinki (about 203 Millions of triples) including two
disjoined areas, and (3) Italy regions of Sardinia, Emilia,
Veneto, Lombardia and Santiago de Compostela (about 321
Millions of Triples, with a number of disjoined areas) (the data
and areas are accessible from https://www.snap4city.org) (see
Fig. 2 that presents the overlap between the two different KBs
API for Tuscany and Emilia of Italy); (ii) a heterogeneous set
of ASCAPI requests has been identified including geo and non
geo based requests; (iii) five different solutions have been
considered (see Table I), and described as follows:

VALIDATION AND EXPERIMENTAL RESULTS

e FSSM: the SuperServiceMap is forced to forward
requests to all ServiceMaps (three ServiceMap VMs
each of which with 16 GByte of RAM and 12 cores)
any query is receiving from clients and merges the

results;

PSSM: the SuperServiceMap performs a selection of
the most suitable ServiceMaps (among the three
ServiceMap VM each of which with 16 GByte of
RAM and 12 cores) to be involved on the basis of the
geoinfo included in the query, and merges the received
results;

ASM: the client is sending the query directly to the
ServiceMap of its referred area (a ServiceMap with 16
GByte of RAM and 12 cores);

GSM: the client queries a ServiceMap in which all the
data (triples) of the three areas have been stored (a VM
with 16 GByte of RAM and 12 cores);

PGSM: as GSM but with a ServiceMap VM with 48
GByte of RAM and 36 cores.

Measures for FSSM, PSSM and ASM have been
performed by querying the real operative services in the
corresponding cities and thus with several thousands of users
were performing access at the same time on the services. GSM
and PGSM have been autonomous servers isolated from the
actual services. And thus, they can be taken as best case and
not as a reference for the operative conditions. In fact, in some
conditions the global solutions do not provide the requested
results.

Thus, a number of clients have been set up to stress the
configurations sending 100 times the same query and
measuring the typical response time as reported in Table 1.
The ASM column reports the performance in the case of direct
query to the correct ServiceMap. FSSM could be considered
a worst case, since no strategies for distribution are applied.

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:26:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 2 — ServiceMaps borders overlapping in Italy (left), ServiceMap Areas
(right), in Europe.

The PSSM solution has obtained a mean performance
improvement of the 28% with respect to the FSSM, by taking
into account all the queries. The ASM solution based on direct
query still performs in average the 22,8% better than the
PSSM solution. GSM solution has been demonstrated too be
under dimensioned in terms of resources to provide interesting
results, it provides an mean error of 45% worst with respect to
the ASM with a variance in the order of 10"7. The solution
PGSM seems to be the better ranked when the queries are
simple as in Queries of kind: B, C, D. On the other hand, in
most of the cases, the performance obtained by the PGSM
solution is not drastically better than the PSSM which
provides performance of the same order in most of the queries.
Moreover, the PSSM solution provides results also in queries
J in which the GSM and PGSM are not capable to provide
results to the users providing an error code after 10 minutes
(marked as * in Table 1). In those cases, the advantage of
using the distributed solution PSSM is evident with respect to
the single VM solutions PGSM. Moreover, the PGSM
solution, despite to its better performance for simple queries,
presents a very large variance with respect to the ASM
reference solution in the order of 10”8, due to queries that does
not produce acceptable results for typical geospatial queries
such as those of type: A, which are requesting services near to
a point. PGSM has been found the most efficient solution for
simple queries (queries to which the PSSM also provides a
response in a fraction of second), since it does not pay the
network overhead of asking to the ServiceMaps, and waiting
for responses. This means that the SuperServiceMap may
implements more sophisticated strategies to improve the
service performance in specific cases. In fact, the solution has
also put in place a rule-based module to change the strategies
according to the services, area, and query shape.

A remarkable test bed for the proposed approach also is
the case in which the geographical region of interest falls
across the boundary between two ServiceMaps. In those
cases, the SuperServiceMap using PSSM identifies the
specific ServiceMaps to be queried and carefully merges
responses, composing a response: removing duplicates that
could be present when ServiceMaps are partially overlap. As
an example, you can query the SuperServiceMap based on
PSSM for all services which are located along the path
outlined in Fig. 3, that joints cities of Firenze and Bologna
(approximately 80Km) tracing the path of the Highway Al,
E35. The query browsing to the following address:

http.//www.disit.org/superservicemap/api/vl/?selection=wkt: LI
NESTRING(11.248284683089423%2043.77705897010958,11.1562
74185042548%2043.82958894455573,11.259271011214423%204
4.48868359713514,11.338648304801154%2044.49415965702086)
producing a limit of 100 results of the 697 POIL.

360

TABLEL VALIDATION PERFORMED IN TERMS OF TESTED
QUERIES ON THE FEDERATED NETWORK (IN BOLD THE BEST
TIMES AND HIGHLIGHTED THE BEST TIMES BETWEEN PSSM AND
PGSM)

Times of Response (ms)
Query/Kind GSM
FSSM PSSM ASM PGSM
Get all services in a 139329
radius of 500 m from the | A | 5076 4670 4033
132306
center of Florence
Get all services in a 81161
radius of 500 m from the | A | 1670 1474 1485
76720
center of Antwerp
Get all services in a 171713
radius of 500 m from the | A | 2377 2148 1622 160890
center of Helsinki
Get all events in a radius 142
of 20 km from Florence | B | 1,762 906 621
. 124
this month
Get all events in a radius 696
of 20 km from the center | B | 1124 531 478 697
of Antwerp this month
Get all events in a radius 179
of 20 km from the center | B | 656 525 404 131
of Helsinki this month
Locate a given bar in the 3259
Municipality of Florence C| 2051 1572 1456 761
Locate a given theatre in 783
the Municipality of | C| 1581 1520 1404
703
Antwerp
Locate a given hotel in 908
the Municipality of | C| 1272 1261 1086
- 599
Helsinki
Get full details about a 1257
given bar in Florence D| 535 314 196 120
Get full details about a 206
given theatre in Antwerp D| 327 233 132 94
Get full details about a 198
given hotel in Helsinki | 2| 32° 229 | 106 146
Locate all bars in a radius 6725
of 1 km from a given bar | E | 4755 4671 3976
. 5745
in Florence
Locate all theatres in a 983
radius of 1 km from a | E | 1689 977 279 696
given theatre in Antwerp
Locate all hotels in a 982
radius of 1 km from a | E | 1627 1234 285 841
given hotel in Helsinki
Locate all cinemas in 275
Florence or in its | F | 307 242 185
. : 202
immediate nearby
Locate all healthcare 207
centers in Antwerp or in | F | 449 337 264
S . 163
its immediate nearby
Locate all pre-primary 171
schools in Helsinki or in | F | 837 748 588
o . 56
its immediate nearby
Get all events in Florence 235
or in its immediate | G| 155 154 162 62
nearby this month
Get all events in Antwerp 271
or in its immediate | G| 939 187 124 56
nearby this month
Get all events in Helsinki 159
or in its immediate | G| 920 178 111 7
nearby this month
Locate restaurants in the 919
district of Katajanokka, | H| 539 351 266
X S 365
in Helsinki
Locate public transport
stops in the small district 363071
of Borgerhout, in H| 1118 oty o6l 342253
Antwerp
Locate a footwear shop in 198
Rifredi (Florence) H| 506 247 | 230 | g

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:26:07 UTC from IEEE Xplore. Restrictions apply.

Times of Response (ms)
Query/Kind GSM
FSSM PSSM ASM PGSM
Get all events in Rifredi 57
(Florence) this month 1| 392 126 82 50
Get all events in 397
Katajanokka, in Helsinki, | I | 623 190 114
. 366
this month
Get all events in the small 76
district of Borgerhout, in | T | 156 128 118 76
Antwerp, this month
Get public transport
routes that traverse the *
district of Rifredi | 1048 A 878 *
(Florence)
Get public transport
routes that traverse the *
district of Katajanokka J'| 4100 e 533 *
Helsinki
Get public transport
routes that traverse the *
district of Borgerhout, in T 1591 7y 1222 *
Antwerp
Get the full address of the 1002
center of Florence K| 58 376 288 355
Get the full address of the 641
center of Antwerp K775 769 668 656
Get the full address of the 778
center of Helsinki K| 799 (2 388 768
Get public transport
agencies that operate 319
within 5 km from the | = | 14! 211701 506
center of Florence
Get public transport
agencies that operate 54
within 5 km from the L 183 149 149 35
center of Antwerp
Get public transport
agencies that operate 61
within 5 km from the | T | 1! 4 1 73 35
center of Helsinki
Find the shortest path 2746
from the center to the | M| 2040 1983 1916
. . 1977
airport in Florence
Find the shortest path 223
from the center to the | M| 605 449 352
R . 157
airport in Antwerp
Find the shortest path 243
from the center to the | M| 375 366 338 223
airport in Helsinki
Get all kind of services
on a Linestring crossing NA
the border on Tuscany N| 2117 1e1e . 2004
and Emilia Romagna

Indeed, data about the Tuscany region are stored in a
dedicated ServiceMap, while data about all other covered
areas of Italy are stored in another. For such a query, the
PSSM provides back the list of services in 1919ms while
querying the PGSM it takes 2004ms.

VIIL

This paper presented a solution for federating Smart City
API. The solution aims to solve the requirements that
presently cannot be solved by traditional GIS solutions. Thus
we would avoid migrating data, providing federation at level
of APIs, involving nodes of any size, combining them
autonomously so that each of them may decide to join or not,
leaving the possibility of having different kind of services,
enabling the movements from among federate areas, prevent
the access and respect GDPR and data security, combining
services, etc. For the design, implementation and validation

CONCLUSION

361

= -

Fig. 3 — A path crossing 2 ServiéeMap areas.

of the solution we have used and enhanced the former
Km4City API and ontology [Nesi et al., 2016], which has
been implemented as the so called ServiceMap. For this
reason, the federation of Smart City API has been provided
in the so-called SuperServiceMap. The validation has been
performed by considering 4 large areas and smart city
services in place covering: Tuscany region of 3.5 inhabitant
in the center of Italy, north of Italy and Sardegna island,
Antwerp and north of Belgium, and Helsinki and south of
Finland. The validation has shown that the solution performs
better that single centralized services in many cases, except
for the cases in which simple direct queries are performed.
This means that the SuperServiceMap may implements a
number of more sophisticated strategies to improve the
service performance in specific cases. In fact, the solution has
also put in place a rule-based module to change the strategies
according to the services, area, and query shape.

REFERENCES

Hernandez-Muiioz, José M., et al. "Smart cities at the forefront of the
future internet." The future internet assembly. Springer, Berlin,
Heidelberg, 2011.

P. Bellini, D. Cenni, M. Marazzini, N. Mitolo, P. Nesi, M. Paolucci,
"Smart City Control Room Dashboards: Big Data Infrastructure, from
data to decision support", Journal of Visual Languages and
Computing, 10.18293/VLSS2018-030

Badii, Claudio, et al. "Analysis and assessment of a knowledge based
smart city architecture providing service APIs." Future Generation
Computer Systems 75 (2017): 14-29.

Zuccala, Maurilio, and Emiliano Sergio Verga. "Enabling energy smart
cities through urban sharing ecosystems." Energy Procedia 111 (2017):
826-835.

Krylovskiy, A., M. Jahn, and E. Patti. "Designing a smart city internet
of things platform with microservice architecture." 3rd Int.Conf. on
Future Internet of Things and Cloud. IEEE, 2015.

Nesi, Paolo, et al. "Km4City Smart City API: an integrated support for
mobility services." 2016 IEEE International Conference on Smart
Computing (SMARTCOMP). IEEE, 2016.

C. Badii, P. Bellini, A. Difino, P. Nesi, "Smart City IoT Platform
Respecting GDPR Privacy and Security Aspects", IEEE Access, 2020.
10.1109/ACCESS.2020.2968741

Cinquini, Luca, et al. "The Earth System Grid Federation: An open
infrastructure for access to distributed geospatial data." Future
Generation Computer Systems 36 (2014): 400-417.

Gyrard, Amelie, and Martin Serrano. "Connected smart cities:
Interoperability with seg 3.0 for the internet of things." 2016 30th Int.
Conf. on Adv. Inf. Networking and Applications (WAINA). IEEE.

Makris, Konstantinos, et al. "Ontology mapping and SPARQL
rewriting for querying federated RDF data sources." OTM
Confederated International Conferences" On the Move to Meaningful
Internet Systems". Springer, Berlin, Heidelberg, 2010.

Bonino, Dario, et al. "Almanac: Internet of things for smart
cities." 2015 3rd International Conference on Future Internet of Things
and Cloud. IEEE, 2015.

[12] Bellini, Pierfrancesco, et al. "Km4City ontology building vs data
harvesting and cleaning for smart-city services." Journal of Visual
Languages & Computing 25.6 (2014): 827-839.

[13] Soto, José Angel Carvajal, et al. "Towards a Federation of Smart City

Services." International Conference on Recent Advances in Computer

Systems. Atlantis Press, 2015.

[1]

[10]

[11]

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:26:07 UTC from IEEE Xplore. Restrictions apply.

